Enabling System Performance through Practical Thermal Innovation

Speaker: (name, affiliation)
register
Presentation Slides: “title” (xx MB PDF) after meeting
Meeting Date: (day), January xx, 2018
Time: 11:30 AM Registration (and sandwiches/drinks); 12:00 PM Presentation
Presentation-only: 12:00 noon (come at 11:45)
Cost: $5 IEEE members. students, unemployed, $10 non-members

Location: Texas Instruments Building E Conference Center, 2900 Semiconductor Dr. (off Kifer Rd), Santa Clara
Reservations: 1901eps.eventbrite.com
Summary: There are tremendous challenges of increasing total power as well as high localized heat flux resulting from the growing push for heterogeneous integration on silicon and at the package level.
These challenges dictate that a thermal solution needs to be architected based on these factors: current density; power mapping; package structure; and assembly and reliability requirements.
This talk will explore the impact of selected thermal solutions at the packaging and assembly levels, as well as at the system level. It will emphasize how to co-design the thermal architecture with performance, reliability, mechanical and assembly requirements. We focus on having a full understanding of the end-user application. Also, this talk will disclose an innovative thermal solution that can extend the cooling limit by up to 50%.


Bio: Dr. Gamal Refai-Ahmed is a technical director at Xilinx, in San Jose. He is an ASME Life Fellow, a Fellow of the Canadian Academy of Engineering, and a Distinguished Engineer (and Adjunct Professor) at SUNY Binghamton. He obtained the M. A. SC. and Ph. D. degrees in Mechanical Engineering from the University of Waterloo. Gamal has made important contributions to electronics packaging and development of electronics cooling technologies for the consumer electronics, telecommunications and energy industries. He is the author of more than 90 technical papers and more than 100 US patents/International Patents/Pending patents.
Gamal is an Associate Editor of the IEEE/EPS Transactions on Components, Packaging and Manufacturing Technology, and the ASME Journal of Thermal Sciences and Engineering and Applications. He is the recipient of the 2008 Dxcellent Thermal Management award, 2010 Best Associate Editor J Electronics Packaging, 2010 Calvin Lecture and 2013 K16-Clock award in recognition for his scientific contributions and leadership in promoting best electronics packaging engineering practices. In 2014, Gamal received the IEEE Canada R. H. Tanner Industry Leadership for sustained leadership in product development and industrial innovation, the 2015 ASME service award and the 2016 IEEC SUNY-Binghamton Innovation leader of the year.